-
For basis functions, it uses and functions with a whole number frequency.
-
Foundation for Fourier analysis and expansion of periodic functions in general.
-
Simple mathematical tool for approximation of periodic functions.
-
The coefficients are called frequency spectrum.
-
Each coefficient is the projection of the -th basis function onto .
-
It answers the question: "How important is this basis function in the grand scheme of ?"
-
Typically, we use a scale for visualization of the coefficients.
Fourier Series and Transform
- Fourier analysis
-
-
Study of how general functions (e.g., on ) can be approximated by sums of simpler (e.g., trigonometric) functions.
-
Fourier’s original motivation was to solve the heat equation, a partially differentiable equation.
-
A partially differentiable equation (PDE) involves multiple variables and one or more of their derivatives.
-
Example: I want to know what happens, when I put two rods of different temperatures into contact.
-
-
Fourier series
- Fourier series (FS)
-
Series expansion (CZ: rozvinutí nekonečné řady) of a periodic function into a sum of basis functions.
- Fourier series on -periodic functions
-
Any -period function can be expanded in the following way:
-
— frequency at which and oscillate
-
— coefficients of even parts of
-
— coefficients of odd parts of
-
- Fourier series on L-periodic functions
-
Similar to -periodic functions, but we multiply by , where :
- Complex Fourier series on -periodic functions
-
With complex numbers the formula becomes:
When we express out of the above formula, it converts time into frequency:
- Complex Fourier series on L-periodic functions
-
We multiply by and adjust the scaling factor and integral boundaries, where :
Expansion/Frequency → Time:
Time → Frequency:
- Why use complex numbers in the Fourier series and Fourier transform?
-
-
They simplify the formula:
-
(Euler’s formula)
-
-
With them, FT is can be solved linearly and expressed using matrix multiplication. Without them, it’s an optimization problem that must be solved numerically.
-
If we used real numbers and, for example, as the basis function, we would not be able to use matrix multiplication and would have to find numerically.
-
-
Complex numbers also symbolize rotation, which makes for a nice intuitive explanation (see below).
-
- Proof of orthogonality of the Fourier series
-
TODO
- Gibbs phenomenon
-
Functions with discontinuities are hard to be approximated with Fourier series as and are both smooth.
Fourier transform
- Fourier transform (FT)
-
Fourier transform is a function taking a signal (a function of time) and converting it to the frequency domain (function of frequencies).
-
FT is a generalization of FS. It’s derived from L-periodic complex FS with .
-
FS handles only periodic signal. FT handles aperiodic signal.
-
It’s total. Lossless. Doesn’t throw away any information. It’s invertible. A bijection. A linear mapping.
-
It a tool for frequency analysis.
Inverse transform (frequency → time):
Forward transform (time → frequency):
Commonly:
-
- Coefficients of the Fourier transform
-
-
Each coefficient is associated with a basis function oscillating at frequency .
-
is simply a complex number, where:
-
amplitude — strength of basis function
-
phase — controls the phase shift of basis function
-
-
- Spectral density
-
Plot of for .
- Function pairs in the Fourier transform
-
-
FT of the rectangle function is sinc.
-
FT of a Gaussian is a (different) Gaussian.
-
- Intuitive explanation of the Fourier transform [2]
-
-
Complex numbers describe rotation, therefore multiplying by a set of complex numbers "winds up" around a circle.
-
Sampling this wound-up version of (whether using an integral or sum) means calculating the center of mass of the wound up version.
-
When the center of mass is far away from the origin, the wound-up "aligns" with itself, meaning there is a strong correlation between and the sinusoid given by the "winding" frequency.
-
Except in FT, there is no division by the length of the studied interval, so it’s a "scaled center of mass". This has the effect that the more persistent a frequency is, the higher its spike.
-
NoteThe "winding" is clockwise by convention. That’s why there’s a in the equation. -
- Properties of the Fourier transform
-
-
Shift affects only the phase
-
Scaling — Narrowing in the time domain causes widening in the frequency domain, and vice versa:\
-
Derivative enhances high frequencies:
-
- Convolution theorem (CZ: věta o konvoluci)
-
Given two signals and and their Fourier transforms and , respectively, the following holds:
where '' stands for a convolution and '' for point-wise multiplication.
-
- Discrete time Fourier Transform (DTFT)
-
We sample the time domain:
TODO
- Discrete Fourier transform (DFT)
-
-
DTFT with a limited range
-
is also called "direct current (DC)", "mean", or "normalizovaný součet"
-
prakticky má omezený rozsah, matematicky je periodická a dokonečna se opakuje
-
-
- Vlastnostni DFT
-
-
V diskrétním světě nefunguje škálování, máme jen převzorkování.
-
Periodicita + můžeme sáhnout mimo a bude tam hodnota
-
vstupní signál se tváří periodicky, takže může vzniknout "falešná hrana"
-
řešení - rozmažeme hraje - Hammingovo okno (děláme konvoluci ve frekvenční doméně, takže násobíme v původní doméně)
-
-
zajímají nás nízké frekvence, proto v praxi je ve vizualizacích nula uprostřed
-
hermitovská symetrie
-
konvoluční teorém - platí, ale potřeba přidat normalizaci
-
kronekrovo delta
-
DFT a IDFT je efektivnější než konvoluce, ale musíme mít signál rozumné délky (na délce třeba 5 se to nevyplatí)
-
stretch
-
TODO: proč musím snížit amplitudu o 1/sqrt(p)?
-
u piana a hlasů je v té vizualizaci vpravo dole jen amplituda?
-
mixážní pulty umožňují omezit/zvýšit konkrétní rozsahy frekvencí
-
fast fourier transform
-
rekurzivní, rozděl a panuj
-
využívá vlastnosti DFT (stretch, shift, linearity), vlastně vůbec nepočítá vzoreček DFT
-
…ale postupů je víc
-
na dně vracím vstup
-
- 1D Fourier transform formula summary
-
- Low-pass filter
-
-
Linear filter
-
Low frequencies pass through
-
- High-pass filter
-
-
Linear filter
-
High frequences pass through
-
- Sampling
-
-
Abych mohl vzorkovat, musí mít spojitá funkce omezenou nejvyšší frekvenci. (Jinak se frekvenční spektrum ořízne.)
-
Vzorkovací frekvence je zespodu omezená tím, že nechceme ztratit informace, a seshora smysluplností - nechceme plýtvat místem a výkonem.
-
Vzorkováním vzniká omezený ale periodický frekvenční prostor.
-
Nyquist-Shannon theorem
-
Prefiltering jako řešení aliasingu
-
Resampling
-
Warping
-
Post-filtering - supersampling
-
Fourier Transform in 2D
- Fourier transform in 2D
-
Forward continuous:
Inverse continuous:
Forward discrete (2D DFT) of image with pixels:
Inverse discrete (2D IDFT) of frequency domain with values:
- Frequency domain (FD) in 2D DFT
-
-
We only care about one period of FD. Thus, the FD "image" has the same size as the original.
-
We shift the image by so that zero frequency is in the center (and not in the corner).
-
The FD has two components (real/imaginary, or magnitude/phase). Typically, we only display magnitude but phase still exists!
-
We show the FD magnitudes on a scale.
Visually, each vector of FD represents a 2D sinusoidal function of . Magnitude of is the frequency. Direction of is the orientation of the "waves".
-
Questions
- Explain the meaning of Fourier coefficients.
-
They measure the amount of correlation of a single basis function with the expanded function.
- Prove that Fourier transform is a linear mapping.
-
TODO
- Describe the spectral density plot.
-
TODO
- Which frequencies dominate in the Gaussian plot?
-
TODO
- Which operation in frequency domain corresponds to convolution in time domain?
-
Point-wise multiplication.
- Which frequencies are enhanced if we apply a derivative to an input signal?
-
TODO
- Define a discrete Fourier basis function with frequency k and overall length N.
-
TODO
- Create a matrix that can perform forward Fourier transform for a signal of length .
-
TODO
- What is the product of the projection of an even function into a sin wave?
-
TODO
- Why are the wide functions in time domain transformed into their narrow counterparts in frequency domain and vice versa?
-
TODO
- Compare the complexity of standard DFT and FFT.
-
TODO
- What happens in Fourier domain if the signal samples are interleaved with zeros?
-
TODO
- Prove that DFT is a linear mapping.
-
TODO
- Why does scaling not work in the case of DFT?
-
TODO
- Explain the reciprocity of time and frequency domain.
-
TODO
- Show an example of the aliasing effect.
-
TODO
- Explain the difference between low-pass and high-pass filter.
-
TODO
- What is a prefilter?
-
TODO
- Give an example of warping function.
-
TODO
- Explain the relationship between DFT and DCT.
-
TODO
- Describe the F-DCT algorithm and compute .
-
TODO
- Is there ever any reason to do a convolution in the frequency domain?
-
TODO
References
-
[1] David Svoboda, PV291 — Introduction to Digital Signal Processing, 2025
-
[2] 3Blue1Brown, But what is the Fourier Transform? A visual introduction., 2018
-
[3] 3Blue1Brown, But what is a Fourier series? From heat flow to drawing with circles, 2019
-
https://www.youtube.com/playlist?list=PLMrJAkhIeNNT_Xh3Oy0Y4LTj0Oxo8GqsC